Hypoxia reduces airway epithelial sodium transport in rats.
نویسندگان
چکیده
Ascent to high altitude leads to pulmonary edema formation in some individuals. Recent laboratory evidence supports the hypothesis that hypoxia may impair the function of the alveolar epithelium and thus augment edema accumulation via reduced clearance of lung liquid. We investigated the effect of hypobaric hypoxia on epithelial sodium transport in adult Sprague-Dawley rats by measuring the nasal transepithelial potential difference (PD) as an index of airway sodium transport. Baseline PDs were similar to those previously reported in other species. Administration of amiloride resulted in a significant fall in nasal PD, as did ouabain administration for 24 h (-27.8 vs. -18.8 mV; P = 0.001; n = 5 rats). Exposure to hypobaric hypoxia (0.5 atm) for 24 h caused a significant fall in nasal PD (-23.7 vs. -18.8 mV; P = 0.002; n = 15 rats), which was not additive to the changes in nasal PD produced by amiloride or ouabain. We conclude that subacute exposure to moderate hypobaric hypoxia can inhibit sodium transport by the airway epithelium in rats.
منابع مشابه
Hypoxia reversibly inhibits epithelial sodium transport but does not inhibit lung ENaC or Na-K-ATPase expression.
Hypoxia reduces alveolar liquid clearance and the nasal potential difference, a marker of airway epithelial sodium transport. The mechanisms underlying this impaired epithelial sodium transport in vivo remain uncertain. We hypothesized that epithelial sodium transport impaired by hypoxia would recover quickly with reoxygenation and that hypoxia decreases the expression of lung epithelial sodium...
متن کاملChronic Hypoxemia in Children With Congenital Heart Defect Impairs Airway Epithelial Sodium Transport.
OBJECTIVE Ambient hypoxia impairs the airway epithelial Na transport, which is crucial in lung edema reabsorption. Whether chronic systemic hypoxemia affects airway Na transport has remained largely unknown. We have therefore investigated whether chronic systemic hypoxemia in children with congenital heart defect affects airway epithelial Na transport, Na transporter-gene expression, and short-...
متن کاملStabilization of hypoxia inducible factor by cobalt chloride can alter renal epithelial transport
Given the importance of the transcriptional regulator hypoxia-inducible factor-1 (HIF-1) for adaptive hypoxia responses, we examined the effect of stabilized HIF-1α on renal epithelial permeability and directed sodium transport. This study was motivated by histological analysis of cystic kidneys showing increased expression levels of HIF-1α and HIF-2α We hypothesize that compression induced loc...
متن کاملDexamethasone prevents transport inhibition by hypoxia in rat lung and alveolar epithelial cells by stimulating activity and expression of Na+-K+-ATPase and epithelial Na+ channels.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were ...
متن کاملAttenuation of NFkB Activation Augments Alveolar Transport Proteins Expression and Activity under Hypoxia
Epithelial sodium channels (ENaCs) controls vectorial Na across epithelia thus playing a central role in all aspects of fluid clearance in the body. The aim of this study was to investigate in vitro time dependant model of hypoxia induced reduction in vectorial Na and fluid transport across the alveolar epithelium. AEC exposed to 3% O2, for different time periods (1 h, 3h, 6h, 12h, 24h and 48 h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 277 5 شماره
صفحات -
تاریخ انتشار 1999